

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS ASSIGNMENT No. 1887

TIME ENTRY PREDICTION FOR A TIME
TRACKING SOFTWARE

Stjepan Petruša

Zagreb, July 2019.

Foremost, I would like to express my thanks to my mentor Tomislav Burić for

continuous support and for making this thesis really exciting and interesting.

Besides my mentor, I would like to thank Tomislav Car, Jan Varljen, and Ivan

Lučin from Productive for all the help understanding how Productive works. They

pushed me forward to explore further and become a much better engineer than I

was before. In addition, a thank you to Ivan Hribar, whose guidance helped me in

the creation of figures in this paper. It was a real pleasure working with all of them.

My sincere thanks also go to my colleague and my friend Matej Janjić for all

support in the last couple of years, for countless hilarious moments, excellent

beer, and many great advice.

1

Table of content
Introduction 3

1 – Time tracking software 5
1.1 – Available tools 5
1.2 – Productive 5
1.3 – Time entry structure in Productive 8

2 – Architecture and infrastructure 9
2.1 – Current architecture 9
2.3 – Time entry prediction microservice – Helga 9
2.3 – Authorization 10
2.4 – Infrastructure 11

3 – Data preprocessing 12
3.1 – Patterns in time tracking 12
3.2 – Preprocessing flow 13
3.3 – Grouping and ordering 14
3.4 – Duplicate and missing data 15
3.5 – Sliding window 16
3.6 – Training data 17

4 – Algorithms 19
4.1 – Training and evaluation 19
4.2 – Heuristic search 19
4.3 – Deep neural network 22

5 – Recurrent neural network 23
5.1 – Architecture of the model 24
5.2 – Software solutions 25
5.3 – Optimization of hyperparameters 26
5.4 – Training and evaluation 30

6 – Connected system 32
6.1 – Pre-evaluation 32
6.2 – Evaluation 33
6.3 – Post-evaluation 34
6.4 – Caching 34

Conclusion 36

Sources 38

2

Introduction

Tracking worked time is a crucial step in calculating the profitability of a

company that works on many different projects. Examples of such companies are

architecture studios, design studios, software development, and marketing

agencies. To calculate the resources spent on a specific project in a time interval

those companies rely on their employees to record the amount of time taken for a

specific activity on a project. The process of recording that time is called time

tracking.

Time tracking is tedious mostly because it required each employee to

create time recordings called time entries for every working day. The whole

process consists of many repetitive parts. Many designers, developers, and

engineers work on the same or similar projects throughout the period of many

days. Working day, in many cases, consists of activities based on a particular

company, like lunch break, daily or weekly meetings. Time tracking also holds

great importance. Using time entries managers can easily track and update

estimates on projects, calculate the profitability of projects or give honest feedback

to clients about the state the project currently is.

Problems with time tracking exist mainly on a lower level. Those are

repetition, need for maintenance, and stress generation. On a higher level, time

tracking provides precious information which can be of crucial help for project

managers. There are many ways on how to mitigate those problems. One solution

could be timers. Timers would allow employees, or in this case time trackers, an

ability to start a timer when starting to work. By stopping the timer, they would not

need to think about how much time went by. Problems with timers are that people

often forget to stop one and start another timer. In that case, timers do not provide

any help. A time tracker has to do a correction of that bad time entry which creates

stress once again. The second solution would be suggestions. Suggestions work

3

in a way that they provide an ability to create complete time entry with one click.

They function like drafts. If the user wants to create a time entry as suggested it

needs to confirm suggestion. If suggestions are relevant and correct, employees

may find time tracking much easier, which in the end benefits both employees and

managers.

Our goal in this thesis is to create such an algorithm that will provide good

and appropriate suggestions. As a source of recommendations, we can use

bookings. Bookings are allocations made for each employee which show on what

project that person should be working. Operations teams often create those

bookings, and in theory, they have a high correlation with created time entries. For

the second source of recommendations, we can use historical data to predict next

time entry. If there is a common pattern between already created time entries, the

algorithm should be able to find and use it.

Benefits of good time tracking experience are endless. Making time tracking

process easier will lead to less stressed employees. Less stress can increase the

quality of produced time entries what in the end can head to better project

management and more on-point estimations. If time entries present real time

spent on the project, project managers can make more less-impactful decisions

and less big modifications to the project's flow. By making the project more

consistent through time, engineers and designers feel less pressure which can

improve their personal growth. In the end, improving time tracking experience can

lead to better developers and designers, and consequently higher quality of work

and better success of the company.

4

1 – Time tracking software

1.1 – Available tools

There are many time tracking tools currently available in the market. Even

though certain agencies still use primitive tools like Microsoft Excel[1], we’ll focus

on professional solutions. Some of the most popular tools are Toggl[2] and

Harvest[3]. They have created a great interface to allow users to track time with as

little effort as possible. Some of their features include automated timers, simple

and intuitive user experience and overview of historical data. Cons of those

solutions are that they only do time tracking. They do it very well, but we are

looking for a solution which can show greater benefits in the long term.

Many project management and reporting tools are already integrating time

tracking in the core of their products. Good examples would be 10,000ft[4] and

Productive[5]. Their solutions combine time tracking, resource planning, project

management, and reporting. Improving their time tracking would benefit all other

aspects of the tool, and not only time tracking plan like it would be with Toggl and

Harvest who specialized only for time tracking. As we managed to get in contact

with people at Productive, we decided that Productive would be a great fit for our

project. This way we get an ability to implement our solution based on an existing

software which can benefit from all positive incomes better time tracking can

generate.

1.2 – Productive

Productive is a tool for managing sales pipeline, resource planning, project

management, time tracking, and reporting. Their headline is “Productive is the only

tool you need to run a profitable agency.” and it provides coverage of a complete

5

project lifecycle which is great because it can illustrate all the benefits we

mentioned before. Productive offers web, desktop, and mobile applications.

Figure 1.1 – Productive logo

Interface for time tracking module in Productive is shown on figure 1.2. It

consists of a couple of elements:

1. New time entry form – consists of two modes: manual mode and timer

mode. In manual mode, the user can quickly create a new time entry for the

entered amount of time, while in timer mode user starts a new timer.

2. Navigation bar – contains all the days of the selected week for a swift

change of the date. It also displays total time tracked for each day and

cumulative time for the whole week.

3. Bookings bar – lists all bookings made for the current user and the selected

date. Allows creating a new time entry or timer with time predefined in the

resource planning module.

4. Time entries list – lists of created time entries for selected date grouped by

project. There is an option to edit or delete each time entry.

5. Events list – displays all events scheduled in resource planning module.

Examples of events are a vacation or call in sick.

6

Figure 1.2 – Time tracking interface in Productive

Just looking at the interface, we can see that Productive already has a

great time tracking section. Other features that are related to time tracking are

automatic email reminders if a user has not tracked time for the previous day.

There is also a timer widget which allows the user to create a new time entry or

start a timer from anywhere in the application.

Figure 1.3 – Time tracking widget accessible from the sidebar navigation

7

1.3 – Time entry structure in Productive

Each time entry in Productive contains many fields:

1. Project/service – a reference to a service on a project. Time entry can be

related to only one project/service.

2. Note – an optional short description for the time entry.

3. Time – the number of minutes spent working on the selected project.

4. Date – a date time entry associates to. Time entries can have a date in the

past or the future.

In Productive time entries contain many other attributes like billable time, but they

are not important for us as they do not affect our algorithm.

8

2 – Architecture and infrastructure

2.1 – Current architecture

Productive internal architecture consists of many small microservices which

work together. For this project, we need only two of them: API service and APP

service. The main purpose of the API microservice is to provide and control the

data as it is the main endpoint to the database. It makes sure that all data are

validated and saved. APP service provides a web application and the main

interface for Productive. It serves as the main connection between users and the

backend.

Figure 2.1 – Communication between API and APP microservices

In figure 2.1 we can see how those two microservices work together. API

service provides data, and APP service displays them to the user. Communication

between those two is done using HTTPS (Hypertext Transfer Protocol Secure),

and the data is formatted using JSON API standard. JSON API standard works

great here because we have a standardized way of how data should be formatted.

All requests that are not in JSON API format are automatically rejected. As those

two services work as microservices, it is logical that our solution works as a

microservice too.

2.3 – Time entry prediction microservice – Helga

Our microservice will use API and APP microservices as providers for input

and output data. For easier comparison, we will give our microservice an

9

accessible name: Helga. In figure 2.2 is new architecture with our microservice

Helga.

Figure 2.2 – Communication between API, APP and HELGA microservices

Helga microservice will work together with APP and API microservice in a

particular way. User loads the website served from APP microservice. App then

communicates with API through request A and response A displayed in image 2.2.

When APP needs to display suggestions, it will make an HTTPS request to our

new Helga microservice. Once Helga will have an answer it will return it to the

APP. Request B and response B portrait that communication. To create prediction

Helga will need historical data from API service. Using request C and response C,

over HTTPS, Helga will fetch necessary data.

2.3 – Authorization

API service authenticates each request using secret API token saved in

cookies in the user's browser. If we implement the communication between Helga

service and API service as described before, we will always get an error from the

API because our requests will not be authenticated. To authenticate them we need

to send a secret token with the request using query parameters or cookies. To

simplify implementation, we will just use cookies that we received in the request

from front-end client (APP service). Of course, there are more secure ways to do

authorization between two microservices. One way would be to have a secret

token, or even a pair of public and private keys, just for those two microservices.

10

That way both API and Helga will know for sure if the request or the response is

legit. Because we do not have direct access to API service, we are forced to use

the token provided from the front-end application.

2.4 – Infrastructure

Helga microservice will work as a regular web server accepting requests

through HTTPS and returning predictions in response formatted following JSON

API standard. A basic web server can be implemented using many different

programming languages like Java, Python, PHP or JavaScript. Predictions will be

made using historical data which tells us we will have a lot of data manipulation

and processing. Therefore Python is an obvious choice as it provides a clear

interface for data processing. Flask[8] is a framework for Python which allows

creating simple and easy to use web servers without big overhead. As our server

only needs to do one thing, provide time entry suggestions, big and heavy

frameworks like Django, would be overkill in this situation.

11

3 – Data preprocessing

With the arrival of new methodologies in project management, like agile

development, more time is spent on planning work ahead. That way project

managers can easily predict the state of the project in a couple of weeks, or even

months. That also brings more meetings for all members of the project. Our

algorithm could use data from a calendar application and give suggestions based

on scheduled bookings. That process would require us to create integrations with

many other calendar 3rd party applications. To simplify our process, we will only

use time entries from the past and not bookings from a calendar application. Using

this approach we can ensure our algorithm works fine even when tasks are not

scheduled in advance. Integration with calendar applications could be a further

improvement for this system.

3.1 – Patterns in time tracking

To implement a good time entry prediction system, we first need to

understand the data we will use. As described in section 1.3 each time entry has a

time component in the form of a date field. We can utilize that field to try and find a

common pattern between time entries with the same project/service but a different

date.

There could be a countless number of patterns that can occur with time

entries. Even if we narrow historical data to a couple of weeks, the number of

different patterns is too big. Therefore, we will focus only on common patterns and

on patterns that occur within our training data. Many patterns have a different

duration. Some can exist for only one week, while others can be seen through all

data. Examples of those two are shown in figure 3.1. Pattern A is an example of a

structure with a duration longer than the observed time period, while pattern B has

a duration of only two weeks.

12

Figure 3.1 – Patterns with different duration

Our first hyperparameter will be the size of the window we use for looking at

historical data. In case our window size is too big, the algorithm will be too slow

because it will need to get and process a lot of data. If the window size is too

small, the algorithm might not detect all patterns. Training data will contain time

entries from a significantly longer period than our window size, just to be sure our

algorithm learns all patterns in the learning phase.

3.2 – Preprocessing flow

In order to make extraction of patterns easier, we will transform our input

data into a consistent structure. That structure will be in the form of an array

containing only two values — 0 and 1. Transformation of raw data will take several

steps. Figure 3.2 is an example of raw data of six entries before any alteration.

13

Figure 3.2 – Example time entries

3.3 – Grouping and ordering

First two steps in data preprocessing are:

1. Split time entries into groups based on the project and the person who

created it.

2. Order time entries in each group by its date.

Splitting is important because we do not want data from one person, or

from one project to mix with data from another person or project. Ordering is here

to help us find duplicates and missing values in the next step.

Figure 3.3 – Grouped and ordered time entries

14

3.4 – Duplicate and missing data

To represent time entries as zeros or ones, we must first remove all

duplicate entries. We use those boolean values mostly because we want to know

if there was time entry for a specific day, project and person. Some people like to

split large chunks of work into smaller parts and create separate time entries for

each part, while others create only one larger time entry. To eliminate that

problem, we remove all duplicate time entries.

Figure 3.4 – Duplicate time entries

One of the restrictions with using boolean values for representation is that

we cannot have any other additional data. That is why we ordered time entries by

date in step 2 because now we know that time entry later in array happened after

all time entries before it. There could be a case when a person did not work on a

project on a specific date, which creates gaps in our data. To remove that gaps we

create dummy time entries so that we could have data for every combination of

person, project, and date if there is at least one entry.

15

Figure 3.5 – Adding a dummy time entry

3.5 – Sliding window

Last two steps in data preprocessing are final data structure extraction

using the sliding window technique and mapping to binary values. Extraction using

the sliding window is helping us have data structures of the same length. In figure

3.6 is an example of the output of the sliding window method using two as a length

of the window. As described before, the length of the sliding window is a

hyperparameter and we will need to optimize it later. Conversion to binary values

is necessary as it simplifies algorithm and speeds up prediction as the algorithm

needs to understand two different values. Also, we do not care about other parts

of the data like who created time entry or to what project/service the entry refers

to.

16

Figure 3.6 – Sliding window extraction and transformation to binary values

3.6 – Training data

This data preprocessing method will be applied to raw data provided by the

Productive team. Granted raw data contains information about more than 50 000

time entries in a time range of one month. Raw data consists of only two values:

date and group key. The date is needed for ordering step in preprocessing, while

group key is used to know which time entries are connected and can be used for

grouping step.

Last step, sliding window, changes drastically how much data could be

used for testing. Small sliding window sizes produce a lot of training data, while

long windows give fewer data. How that number of data changes depending on

the sliding window size is shown in figure 3.7

17

Figure 3.7 – Data length depending on the sliding window length

18

4 – Algorithms

4.1 – Training and evaluation

As we are dealing with an abundance of data, our algorithm will need to

consist of two steps. The first step will extract common patterns from training data,

and store those patterns in a structure that can be used later in the second step.

The second step will use the saved structure to promptly report the final prediction.

These two steps behave in diagonally different ways. The first step, or training

step, is slow and does a lot of computation. It works as an optimizer for the second

step. Training will be run periodically when needed, as it is not efficient to run it

with every request. Evaluation step needs to return the prediction as soon as

possible because we do not want users to wait for predictions every time they

want to time track. It is also important that we save the state after training because

we want to keep the training data even after server restart or any similar

inconvenience.

4.2 – Heuristic search

Our first attempt to build the system for predicting time entries will be based

on a heuristic search algorithm. The algorithm will try and match a given pattern

with a pattern from the past. If it does not find any match it will try and find a

similar pattern in the neighborhood of the original pattern. The neighborhood of the

pattern is defined as a set of all patterns that differ from the original pattern by only

one item. In figure 4.1 is an example of a neighborhood for a pattern with a length

of 5. The training step for this algorithm is quite primitive — after data

preprocessing, we just count the number of occurrences for each pattern. In the

final structure, we will only save patterns with the largest number of appearances

in the training data.

19

Figure 4.1 – Neighborhood for pattern 10011

Structure for saving patterns is quite simple. It is a hashmap where the keys

are patterns and values are numbers of occurrences. Code for generating this

structure in Python is in figure 4.2.

patterns_map = dict()

for pattern in patterns:
 key = ''.join(str(x) for x in pattern)
 if key not in patterns_map:
 patterns_map[key] = 0
 patterns_map[key] += 1

Figure 4.2 – Python code for generating pattern map

Evaluation algorithm gets a pattern with reduced length as an input. It has

length by one smaller than window length from training data because its goal is to

predict the last item in the pattern. As we are working with binary values in

patterns, there could be only two possibilities — pattern ending with 1 or 0. To

decide which one is more probable ending, we look in the hashmap of training

patterns and see which one has a greater count number. If there are no matching

patterns, we create a neighborhood for the given pattern and find a pattern with

the greatest count. For a pattern of length N, there are 2*N patterns in its

neighborhood. This is important to know as window length is our hyperparameter

and the largest it is the more lookups we will need to do as we have more items in

the neighborhood. Luckily our data is stored in a hashmap so lookup is done in

constant time — O(1).

20

As the length of the sliding window is our hyperparameter, meaning that we

should optimize it before our service is ready. For measurement and comparison

of different lengths, we will use accuracy. Accuracy is a ratio of good classification

versus the total number of items. On figure 4.3 shows how accuracy depends on

sliding window length. There are two charts, one with calculating only one

neighborhood, and second, calculating neighborhood of neighborhood if needed.

The first chart with only one neighborhood shows the best results for the length of

13, while the second chart for the length of 16. Difference between those

accuracies is not that big, only 0,56% which can be negligible. In the training

process, all patterns that occurred less than 4 times were discarded as it

drastically increases memory usage, while not giving a significant amount of useful

data.

Figure 4.3 – Accuracy for different window lengths

In figure 4.4 we can see how much time is spent, on average, for evaluation

of one pattern. If we do lookups only to first neighborhood complexity is linear, but

if we do lookup up to the second level that complexity rises exponentially.

Because of the rise of execution time, lookup to the second level is not efficient

enough, as it does not justify longer execution time with better accuracy.

21

Figure 4.4 – Average execution time for different window lengths

4.3 – Deep neural network

Search for a solution using a heuristic was fast, but its accuracy was not

great. To improve we need an algorithm that has greater capacity but does not

sacrifice execution time. In industry more solutions are turning towards machine

learning and deep learning. Deep learning is rising in popularity due to its great

capacity to learn. With hardware improvements more operations could be done in

less time, making training times lower. Deep learning is a very generative term

because it could be used for image recognition, generative modeling, sequence

modeling or reinforced learning. In our case, we will focus on sequence modeling,

as we are working with patterns and trying to predict the next item in the

sequence.

22

5 – Recurrent neural network

Recurrent neural networks are a type of neural networks with a property

that outputs of a node are also inputs to the same node. Therefore RNNs contain

a state that is kept and modified throughout a certain time. Today they are used

extensively for language modeling. The core of such a network is a long

short-term memory cell or LSTM. LSTMs are known for reaching the best metric

scores among other recurrent cells. LSTMs, like other recurrent cells, has its

output connected to its input. That recurrent behavior can occur a static or

dynamic number of times. In our case that number will be equal to the size of our

patterns or to the length of the sliding window. To optimize training and evaluation,

recurrent neural networks with a static number of layers use a method called

unfolding. That method unpacks one core cell into a feedforward network.

Example of such unfolding is shown in figure 5.1.

Figure 5.1 – Unfolding of recurrent neural network

All machine learning problems require training before they could be put in

use. Training neural networks are pricier than using heuristic algorithms, but it can

lead to greater results. Training is often done periodically or, in some cases, only

once. Unlike with heuristic algorithm, training neural network is not deterministic

and can yield different results. Loss function serves as a guide in training. In our

case, the loss function is binary cross-entropy, and its calculation is in figure 5.2.

23

represents real and predicted value. As the real value is binary, can onlyyi y︿i

have values 0 and 1, only one part of the formula is active at the moment. If the

real value for prediction is 1, the inner part of loss function reduces to . In og(y)l ︿

i

case real value is 0, the inner part is .og(1)l − y︿i

(y, y) − [y log(y) 1)log(1)L = 1
N ∑

N

i=1
i

︿

i + (− yi − y︿i

Figure 5.2 – Loss function for binary cross-entropy

Neural networks are harder to train than algorithms doing a heuristic search

mainly because of the increased complexity and number of parameters. There are

also more hyperparameters that need to be optimized before the model is ready

for use. With the recurrent neural network, there are more hyperparameters that

can affect the final outcome. Apart from sliding window length, new

hyperparameters include learning rate, the depth of the network, size of LSTM

inner memory, and others.

5.1 – Architecture of the model

Our neural network will consist of a single or double layer with LSTM and a

dense layer just before the output. LSTM cells will have a dimension of 64 or 128

and a hyperbolic tangent or sigmoid as an activation function. The complete

structure is in figure 5.3. To decide which of those settings will work the best with

our data, we need to test each of those possibilities.

24

Figure 5.3 – Structure of our model for time entry prediction

5.2 – Software solutions

Before any testing, we need to create our neural network. To help us with

that task, we will use Tensorflow. Tensorflow is a framework, which works with

Python, that allows us to create various neural networks. It provides low-level

support with its tensor objects and high-level support with Keras models. We will

use high-level models from Keras as it eases model creation. Our structure is not

that exotic that it would need any low-level support. Keras is, just like Tensorflow,

a framework which contains many ready-made models and layers and we will use

it to create out complete model.

model = Sequential()

model.add(Embedding(input_dim=2000, output_dim=1,
 input_length=WINDOW_LENGTH-1))
model.add(LSTM(64, activation='tanh'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
 optimizer='rmsprop', metrics=['accuracy'])

Figure 5.4 – Python code for generating our neural network with Keras

25

Code for our model is in figure 5.2 and it first describes that our network will

be sequential — data will flow from one layer to the next one. Next, there is an

embedding layer which controls input data and feeds that data to the next layer,

LSTM. For an LSTM layer, we need to define dimensions and activation function.

After the LSTM layer is a standard dense layer which will provide us the output.

The last step is to compile the model. Compiling will wrap the model with the loss

function and optimizer after which the model is ready for training and evaluation.

Here we will also list all the metrics we want to track, and in our model, we will

track only the accuracy.

5.3 – Optimization of hyperparameters

The neural network, unlike our algorithm with heuristic search, has a lot

more hyperparameters that can drastically change the learning rate or final

accuracy. Unlike regular parameters, hyperparameters are not changed during the

training. That is why we need to optimize them before the model is ready for

evaluation, and eventually for production. With every new hyperparameter

complexity of optimization rises exponentially mainly because we cannot assume

all hyperparameters are independent. Hyperparameters that we will focus on are:

● length of the sliding window

● the dimension of LSTM memory

● a number of LSTM layers

● activation function at the output of the dense layer

● activation function for LSTM cell

● learning rate

We will not consider and test all possible combinations of these hyperparameters.

To find good enough values we will test different values for hyperparameters for

different values of the sliding window size. We already did optimization of the

length of the sliding window in chapter 1.1 when we were working with an

26

algorithm with heuristic search, so we will take a similar approach. We will

examine accuracy for values between 2 and 25.

We are planning to see an impact on accuracy for different values of

hyperparameters. First, we will examine the impact of memory dimension for the

LSTM cell. As small changes in dimension do not change a lot in the output, we

will test values: 2, 4, 8, 16, 32, 64, 128 and 256.

Figure 5.5 – Accuracy for different window lengths with different LSTM memory size

As it is shown in figure 5.5, LSTM memory size does not have an impact on

the accuracy of the model. All values of the dimensionality for LSTM give similar

values of accuracy on train dataset. Different memory size yields a different

number of parameters that need to be optimized. In table 5.6 is a comparison of a

number of parameters for LSTM and dense layers depending on the memory size.

27

LSTM
dimensionality

Number of trainable parameters

LSTM layer Dense layer Total

2 32 3 35

4 96 5 101

8 320 9 329

16 1 152 17 1 169

32 4 352 33 4 385

64 16 896 65 16 961

128 66 560 129 66 689

256 264 192 257 264 449

Table 5.6 – Number of parameters depending on LSTM dimensionality

As the memory size of the LSTM does not change the accuracy, but it adds more

trainable parameters, we will keep memory size of 2. This way we have fewer

parameters to train, the training process is faster and we do not sacrifice any

accuracy.

The next hyperparameter we would like to optimize would be the depth of

the LSTM layer. LSTM layers can be stacked just like dense or any other layer.

Outputs of LSTM cells in the first layer are passed as inputs to another LSTM

layers, and so on until the last LSTM layer whose output is forwarded to a dense

layer. In our model, we will test only two configurations: single and double LSTM

layers. In figure 5.7 is accuracy scores for networks with one and two LSTM

layers. Difference between those two is practically nonexistent. That lack of

improvement could be because our model already has a large capacity, but the

data it received is inconsistent and contains noise which interferes with the

learning process. This can also point out that the model is overfitted. If we look at

the accuracy for the validation dataset, we can see it only rises with small

fluctuations which disprove our assumption of overfitting.

28

Figure 5.7 – Accuracy for different window lengths with one and two LSTM layers

Last hyperparameters for which we will test accuracies are activation

functions. There are two main activation functions in our network: one for LSTM

layer and one for the dense layer. Some most popular activation functions in

LSTM networks are hyperbolic tangent and sigmoid. For the activation function in

the dense layer, we will also try the linear function. In figure 5.8 are accuracies for

different combinations of activations functions. Because we have two functions for

the LSTM layer and three for the dense layer, in total we will have six

combinations.

Figure 5.8 – Accuracy for different activation functions on dense and LSTM layers

29

Almost all accuracy scores for all six different activation functions

combinations show similar results. This is something that happened before when

we were optimizing depth of LSTM layer. Indifferent results show that our network

has far more capacity than it is required. Achieving greater accuracy is

problematic in these situations because there is a lot of noise in our training data.

5.4 – Training and evaluation

For hyperparameter optimization, we used the same infrastructure so we

can get reliable results. It is important to make the training process independent

from outer impacts, which can affect our accuracy scores. We used a virtual

machine deployed on Google Cloud Platform. This virtual machine was used only

to train our model using different hyperparameter combinations. This environment

is well encapsulated, what we can see in some results for hyperparameter

optimizations where accuracy scores were the same with different hyperparameter

values.

Training in the virtual machine on GCP is done using CPU, which is not

optimized for training neural networks which require a lot of matrix manipulation

and multiplication. For that reason, training using GPU would be a better choice.

Google Cloud Platform also allows us usage of tensor processing units or TPU for

short. Those units are specially built for training neural networks as they have

hardware support for matrix operations. Problem with TPUs is that they are not

very good for running much training with different network configuration. Each

training starts with an optimization process where the model is optimized for

running on TCU. That optimization allows us running training up to ten times faster

than usual, but it requires some overhead time for model optimization. TCU is very

good for continuous training on same network architecture which needs to be

optimized once and then trained many times. This is a perfect scenario for using

our model in production: we optimize our model once we are happy with our

30

hyperparameters, and from that point on we keep the model constant, with

multiple training which is much faster thanks to TCUs.

In our process of optimizing hyperparameters, there were two phases:

training and evaluation phase. Training phase also consists of the validation

phase, but we will not consider it as a separate phase for now. In figure 5.9 is

shown dependency between execution time and sliding window length for training

and evaluation. Execution time can also be a success metric, just like accuracy,

and in our case, it is an important one. Our system required speed in making a

prediction as it will need to provide results in almost no time. It is impractical and

insufficient if response for time entry predictions comes with a few seconds delay.

Luckily all optimizations we did suggest that small sliding window lengths give

really good results, and those window lengths require less time for computation.

Figure 5.9 – Execution time for different sliding window lengths

31

6 – Connected system

Once we are happy with the neural network, we can start planning how all

components will work together in our system. We described the architecture of our

system in section 2, but here we will focus on the inner workings of our new

microservice. We developed two fundamentally different algorithms and both are a

good fit for our service.

The first algorithm, one using heuristic search, is fast in both training and

evaluation process but does not provide quite good accuracy scores. The second

algorithm, using a recurrent neural network, gives better accuracy scores but lacks

the speed. In the final structure, we could use both algorithms to create a hybrid

version. Another way to speed up the process is the usage of the cache. Some

patterns occur more often than others and results for that patterns could be saved

in the cache so they are instantly available. Cache key could be easily calculated

as a string containing zeros and ones representing the pattern as shown in

sections 3.5 and 4.2.

Our system will consist of 3 steps: pre-evaluation, evaluation, and

post–evaluation step. Each step is responsible for one part of the data flow and

generating the final response. All three steps are independent and can be easily

replaced with a different and better implementation as long as input and output to

and from the step we keep the same.

6.1 – Pre-evaluation

The first step of data flow in our complete system is pre-evaluation step and

its task, once received a request, is to get required data for evaluation, parse and

preprocess it, so it is ready for the evaluation step. We will cover flow in case of

evaluation, as training will be done manually. Our system will listen for HTTPS

32

requests for a prediction. Those requests will consist of only one query parameter:

date, as we want to have an ability to generate predictions for past and future to

test our system. If the date is not provided, today's date will be used. Next, our

system will make an additional HTTPS request to API server to receive time

entries in the last couple of days. Length of how many days are needed is the

same as the length of the sliding window. The response of that request will contain

data about time entries. As API serves all date using JSON response structured in

JSON API standard, we first need to serialize that data so we can use it. After

serialization arises the preprocessing step described in section 3. Also from the

original time entries, all projects are extracted, which will be used for the

evaluation step. For each project group, we start a separate evaluation process to

determine if we should show suggestion for that project or not.

6.2 – Evaluation

Input for the evaluation step is a pattern, list of zeros and ones representing

the existence of the time entry for a certain day in the time range. The first action

in this step is to check if the input pattern exists in the cache memory. If it exists

we instantly return a cached value, otherwise, we start with the evaluation using

one of our algorithms. Which algorithm to use is based on configuration and the

power of the server running our microservice. A hybrid approach would be to use

the recurrent neural network as long as the load on the server is not high. In case

the server receives a lot of requests in a small amount of time, the system could

automatically switch to using the heuristic search algorithm. This approach could

be also used in the case when there is a problem with the neural network.

Another approach is to always calculate predictions using the heuristic

search algorithm, but in the background start calculating prediction using neural

network and its result save to the cache. This way if a pattern is common it will

exist in the cache storage which has values from the neural network. If the cache

does not have a given pattern, it will fallback to a fast, but not so accurate method.

33

6.3 – Post-evaluation

After evaluation steps for all projects are done, their results need to be

processed and sent back as a response to the original request. Responses from

evaluations are filtered and mapped so that we get only a list of projects for which

response was one, and not zero. Those filtered projects are actual predictions for

time entries. Just like API service, APP service, which sent an initial request for

prediction, expects a response in the form of JSON and structured according to

JSON API standard. To return complete time entry, except project, we also need a

relationship to the person for which this time entry is bound to and date. The date

is equal to the received date parameter in the initial request, and the person is the

same as the currently authenticated user.

6.4 – Caching

As in any other server, caching plays a big role in maintaining speed.

Cache serves as a bypass for slow, but deterministic processes. Those processes

have to be deterministic and give the same result for the same input parameters,

elsewhere it could return wrong data. That is why many different API provider

services, including ours, do not want to have nondeterministic and time-sensitive

data in its service. In case the same person makes a request with the same

requested date and created time entries, our service should provide the same

result all the times.

Scope of cache is also important. If we place it right at the start of

pre-evaluation step we would cache incoming requests and responses. But, if we

cache only evaluation step, then only patterns would be saved. Both scopes make

sense, but with caching whole requests we would often have "cache miss" — the

situation where our cache key is too specific so we rarely find a match in the

cache memory and we do the evaluation quite often. To mitigate that problem we

34

cache only evaluation step where multiple different requests will be reduced to the

same patterns.

35

Conclusion

In this project, we have covered a lot of different areas. Our main motivation

was to improve profitability reports for agencies or design and architecture studios

by improving the user experience of time tracking. User experience improvement

was done by introducing suggested time entries to users when they track time.

Those suggested time entries should be relevant to users so they can actually

improve user experience.

We went through a couple of tools which provide time tracking and

profitability monitoring for the company. Productive seemed like a great fit and

also developers from Productive offered us help in the development of our system

by providing training data so we could have real data for measuring the accuracy

of our algorithms.

Before training or evaluating data, we needed to preprocess raw data so

our algorithms could easily understand inputs. That preprocessing was done in six

steps, and at the end, we got patterns in the form of a list containing binary values.

The length of the list was a hyperparameter called sliding window length.

Once our data was processed and ready we could start testing different

algorithms. First one was based on a heuristic search using preprocessed

historical data. It was looking for a neighborhood of a given pattern and tried to

find one in the training dataset. This algorithm was very fast, but it lacked accuracy

and in some situations, it could not provide a result. The second algorithm was

based on a recurrent neural network. We investigated how those networks work

and how modifying different hyperparameters impacts accuracy in the test dataset.

That algorithm provided results with better accuracy, but it had a greater number

of hyperparameter to optimize. After optimization some of then we realized that

even the quite simple structure is too powerful for our case. Our data had a lot of

36

noise which was normal in our context, but bad for accuracy scores of our

algorithms.

Once algorithms were done, we tried to connect all microservices together

with our microservice. Our microservice works in 3 steps: pre-evaluation,

evaluation, and post-evaluation steps. Each step is independent on other steps

and could easily be replaced with better implementation as long input and output

structure is the same. In the evaluation step, we offered a couple of solutions on

how to combine both algorithms in an efficient structure. We also investigated the

impact of caching in this system.

We are quite satisfied with the final result and further improvements could

be done in the pre-evaluation step where we could cache time entries from the

API service, in the heuristic search algorithm where we could introduce weights to

different patterns.

37

Sources
[1] Microsoft Excel – https://products.office.com/en/excel, April 2019

[2] Toggl – https://toggl.com/features/, April 2019

[3] Harvest – https://www.getharvest.com/, April 2019

[4] 10,000ft – https://www.10000ft.com/time-tracking, April 2019

[5] Productive – https://www.productive.io/, April 2019

[6] Productive time tracking feature –

https://www.productive.io/tour/time-tracking/, April 2019

[7] JSON API specification – https://jsonapi.org/, April 2019

[8] Flask framework – http://flask.pocoo.org/, April 2019

[9] Classification: Accuracy –

https://developers.google.com/machine-learning/crash-course/classification

/accuracy, April 2019

[10] Barbara Črgar – February 2019 – Struggling to Get Creatives to Track

Time? Here Are 4 Foolproof Tips –

https://www.productive.io/blog/struggling-to-get-creatives-to-track-time-here

-are-4-foolproof-tips/, April 2019

[11] MIT Introduction to Deep Learning – February 2019 –

https://medium.com/tensorflow/mit-introduction-to-deep-learning-4a6f8dde1

f0c?linkId=64189766, May 2019

[12] Recurrent Neural Networks –

https://www.tensorflow.org/tutorials/sequences/recurrent, May 2019

[13] Christopher Olah – August 2015 – Understanding LSTM Networks –

https://colah.github.io/posts/2015-08-Understanding-LSTMs/, May 2019

[14] Recurrent neural network –

https://en.wikipedia.org/wiki/Recurrent_neural_network, May 2019

[15] Keras loss functions – https://keras.io/losses/, May 2019

[16] StackExchange – Why does keras binary_crossentropy loss function

return wrong values? –

https://stats.stackexchange.com/questions/303229/why-does-keras-binary-

crossentropy-loss-function-return-wrong-values, May 2019

38

https://products.office.com/en/excel
https://toggl.com/features/
https://www.getharvest.com/
https://www.10000ft.com/time-tracking
https://www.productive.io/
https://www.productive.io/tour/time-tracking/
https://jsonapi.org/
http://flask.pocoo.org/
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://www.productive.io/blog/struggling-to-get-creatives-to-track-time-here-are-4-foolproof-tips/
https://www.productive.io/blog/struggling-to-get-creatives-to-track-time-here-are-4-foolproof-tips/
https://medium.com/tensorflow/mit-introduction-to-deep-learning-4a6f8dde1f0c?linkId=64189766
https://medium.com/tensorflow/mit-introduction-to-deep-learning-4a6f8dde1f0c?linkId=64189766
https://www.tensorflow.org/tutorials/sequences/recurrent
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://keras.io/losses/
https://stats.stackexchange.com/questions/303229/why-does-keras-binary-crossentropy-loss-function-return-wrong-values
https://stats.stackexchange.com/questions/303229/why-does-keras-binary-crossentropy-loss-function-return-wrong-values

[17] Sam Witteveen – January 2019 – Keras on TPUs in Colab –

https://medium.com/tensorflow/tf-keras-on-tpus-on-colab-674367932aa0,

May 2019

[18] LSTM Binary classification – GitHub Gist –

https://gist.github.com/urigoren/b7cd138903fe86ec027e715d493451b4,

May 2019

[19] Caching Overview – https://aws.amazon.com/caching/

39

https://medium.com/tensorflow/tf-keras-on-tpus-on-colab-674367932aa0
https://gist.github.com/urigoren/b7cd138903fe86ec027e715d493451b4
https://aws.amazon.com/caching/

Predikcija vremenskih zapisa u alatu za praćenje vremena

Cilj ovog rada je bio dizajnirati i testirati novi mikroservis za postojeći alat za

praćenje vremena koji će pružati predikcije za vremensko praćenje. Motivacija je

bila poboljšanjem iskustva vremenskog praćenja ujedno i poboljšati kvalitetu

vremenskih zabilješki i izvještajima o profitabilnosti. Odlučili smo koristiti alat

Productive jer je kreiran s ciljem da poboljša profitabilnost tvrtke. Kreirali smo dva

algoritma, jedan koji koristi heurističko pretraživanje i drugi koji koristi povratnu

neuronsku mrežu. Oba algoritma imaju svoje pozitivne i negativne strane, i za

najbolje rezultate hibrid oba algoritma bi se mogao koristiti.

Ključne riječi: Praćenje vremena, predikcija uzoraka, neuronska mreža,

pretraživanje heuristikom, alat Productive.

Time Entry Prediction for a Time Tracking Software

The goal of this thesis was to design and test new microservice for an

existing time-tracking tool which will provide suggestions for time tracking. Our

motivation was that by improving time-tracking experience we could get sounder

time entries and reliable profitability reports. We decided to use Productive as our

time-tracking tool as it is built around making companies more profitable. We

created two different algorithms, one using a heuristic search, and another with a

recurrent neural network. Both algorithms had positive and negative sides, and for

best performance, a hybrid method could be used.

Keywords: Time tracking, pattern prediction, neural network, heuristic search,

Productive tool.

40

